Influence of the Disk Wind on the Intrinsic Polarization of Young Stars

Sergei Shulman¹ Vladimir Grinin^{1,2}

- 1 Saint Petersburg State University
- 2 Pulkovo Astronomical observatory of RAS

Intermediate mass, pre-main sequence Herbig Ae/Be stars with a specific type of variability:

- The light curves show Algol like fadings up to 2-3 magnitudes
- random intervals of days to weeks between fadings
- changes in color
- increase in linear polarization to 5-8%

Conservative Model

Grinin (1988):

- Compact gas-dust clumps (clouds)
- Linear polarization

positional angle has no

changes

• Explains the majority of events

Natta and Whitney (2000): eclipse models for a thin disk

UX Ori Deep Minimum

Grinin et. al.

(1994)

Tasks

- Expand conservative model for a star with a circumstellar disk puffed up in the inner region.
- Study eclipses caused by large scale circumstellar disk perturbation

Directions Grid Enumeration Method

Effective three-dimensional dust radiative transfer based on enumeration using the directions grid and the law of total probability.

Finite number of discrete levels of photon packets properties.

- No random noise. No need in realization statistics. Photon packets always have correct distributions.
- Neighboring realizations can be kept effective.

(Shulman, 2018)

Disk and Wind Models

$$\rho(x, y, z) = \begin{cases} \rho_0 \left(\frac{R_0}{r}\right)^{\alpha} \exp\left[-\frac{1}{2}\left(\frac{z}{h(r)}\right)^2\right], & R_i \le r \le R_d, \\ 0, & \text{otherwise,} \end{cases}$$
$$r = \sqrt{x^2 + y^2}, & h(r) = h_0 \left(\frac{r}{R_0}\right)^{\beta} \end{cases}$$

The disk puffing in the dust sublimation zone is produced by a disk wind. Safier (1993): $\sqrt{r} \sum -3/2$

$$\rho = \rho_0 \left(\frac{r}{r_0}\right)^{-3/2} \eta(\chi)$$

Disk Puffing Up

Polarization - Magnitude

Color

Shulman & Grinin (2019)

Results

- The position angle of polarization may differ by 90° on different wavelengths (Pereyra et al. 2009)
- The polarization may not change during the eclipse (Rostopchina-Shakhovskaya et al. 2012)
- There can be no reddening of the star: color indices may decrease during the all fading (Grady et al. 1995)
- Large scatter of polarization parameters at the same brightness level is possible (Rostopchina et al. 2000)

Disk Perturbation

$$h(x,y) = h_0 \left(\frac{r}{R_0}\right)^{\beta} \left(1 + \frac{h_{hump}}{\sigma\sqrt{(2\pi)}} \exp\left(-\frac{(x - r_{hump})^2 + y^2}{2\sigma^2}\right)\right)$$

 Disk perturbation causes an eclipse and the change of the linear polarization positional angle

 Huge perturbations do not lead to the observed changes of the positional angle

Results

- The perturbation of a thin disk leads to small changes of the linear polarization positional angle
- If the disk has a puffing up, the positional angle change may be up to 60°
- Thick disk may also have the linear polarization positional angle changes up to 30°
- The results depend on the puffing up model and wavelength significantly.

Thank you for attention!