Dust in the near environment
of classical T Tauri stars
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 Dippers (AA Tau - type stars)
* Dimming events in cTTS

e Dusty disk winds



Circumstellar environment of SU Aur
in polarized light
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here is the obscuring dust?
y does it appear on the line of sight?

nat is the gas-to-dust ratio in the obscuring matter?



NGC 2264 with CoRoT and SPITZER
Multiple origins of variability, by Cody et al. 2014

Continuous 30-days monitoring of 162 cTTSs
in optical and NIR (Dec 2011)

Morphology of light curves:

- Periodic (cool spots)

- Bursters (short events of accretion)

- Stochastic (circumstellar dust)

- Dippers (discrete fading events lasting 1-5 days)

The largest category (>20 % ) are optical dippers.

CoRoT = COnvection, ROtation and protoplanetary Transits
Orbital telescope (2 x 27 cm), 2007-2013.
SPITZER: photometry at 3.6 mkm
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NIR light curves are different!
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Fig. 15. V-band light curves of AA Tau at different epochs: 1995
(Paper 1), 1999 (Paper II), 2003 (unpublished), 2004 (this paper). All
light curves have been folded in phase with the same period of 8.22d
but the origin of phase for each season is arbitrary. Note how the shape
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and depth of the eclipses vary on a timescale of several years.

Bouvier et al 2007

AA Tau

clTS, K7

8.22 day period

of axial rotation.

High Inclination(edge-on)

The amplitude of the minima
is about 1 magin V.

Polarization rises as the star fades
The circumstellar extinction

corresponds to the interstellar law,
that is the dust particles are small.



The mechanism of light-blocking by a warped inner disk has been
proposed as an explanation for dips in the light curve of AA Tau

(Bouvier et al. 1999) and some other cTTS (Bouvier et al. 2003, 2007,
Alencar et al. 2010).

Romanova et al, 2013

The disk warp periodically eclipses the central star,
causing a modulation of its optical light curve.
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Fig. 3. Upper panel: Kepler K2 light curve obtained for LkCa 15 fronm
March 7 to May 28, 2017. The light-curve morphology is clearly tha
of a dipper. Lower panel: K2 light curve folded in phase with a perioc
of 5.78 days. The color code is the same in both panels and reflects the
Julian Date of observations. Two flare-like events are visible in the ligh
curve (t=7T838 and 7851).

Alencar et al 2018

Lk Ca 15
cTTS, K5
P=5.78 days

Kepler, K2
March 7 to May 28, 2017

The inner disk warp is changing
due to temporal variations
in the magnetosphere topology



V 354 Mon ( AA Tau - like star in NGC 2264 ):
Differential absorption spectroscopy (three spectra)
revealed a low gas-to-dust ratio in the inner disk,
less than a tenth of the ISM value.

The excess of dust in the inner disk may be a result of
the disk evolution toward dust-dominated disk

or a fragmentation of larger bodies that drifted
inward from larger radii in a still gas dominated disk.

Schneider et al. 2018



The dimming events in cTTS



A sudden increase of circumstellar
dust extinction on the line of sight
without concomitant change in the Q ﬁ i’# » ,'
accretion rate (Bouvier et al, 2013) @ !t!
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RW Aur dimming events in 2010-2019
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Figure 1. The light curve of EW Aur A+B in the V band after
2010 based on the visual (the grey dots) and photoelectric (the
black dots) data from the AAV S0 database and our observations.
The upper axis is for calendar years, the ticks correspond to the
beginning of each year.

from Dodin et al, 2019



RW Aur A:
appearance of hot dust during the optical minimum of 2014-2015
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Resolved photometry of RW Aur A: dimming of 2010 and 2015
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No major accretion variations were observed across the dimming events

Facchini et al 2016

See also: Antipin et al. (2015); Petrov et al 2015
Takami et al 2016, Boshinova et al 2016
Dodin et al 2019
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RW Aur A

* During the minimum brightness, polarization degree
reached upto30%in | band
* Polarization angle coincides with the jet axis

Conclusion: The polarization of RW A during the dimming was
generated by scattering in a dusty wind which flows along the
rotation axis

scattered light

disk plane

Dodin et al, 2019



A planet crash?

Chandra X-ray observations of RW Aur during the 2017 dimming
event revealed that the iron abundance in coronal gas was an
order of magnitude above Solar, in contrast with previous sub-
Solar Fe abundance measurements.

“We speculate that the break-up of a terrestrial planet or a
large planetesimal might supply the gray extinction seen in the
optical, ...and also provide the iron in the accretion stream to
enhance coronal abundances. “

Gunther et al, 2018

Alternative scenario: reactivation of a dead zone
with following accretion of dust (Garate et al, 2019)



Dimming events in the FUor V582 Aur, 2014-2017
(the star has been in outburst since 1985)
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An extended dust cloud obscuring the inner disk ?

Zsidi et al, 2019, ApJ 873 130



Dust in disk wind



RY Tau: an UXor among cTTS
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Inclination > 60 deg Maccr = 108 M. /yr
The star is permanently obscured by 0

, age =4.7 Myr
circumstellar dust

Petrov et al, 2019



FLUX
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RY Tau:

Ha line profile correlates with stellar brightness.
Impact of wind on circumstellar dust?
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RY Tau:
Dust-laden disk wind near the inner edge of accretion disk
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Petrov et al. 2019

“Dust in the disk winds from young stars as a source of the
circumstellar extinction” Tambovtseva & Grinin, 2008.


https://ui.adsabs.harvard.edu/

Dusty disk wind at the sublimation rim of SU Aur

NIR Interferometry with CHARA array (Mt. Wilson, CA) and
model of a dusty wind

Computed synthetic T e
image in K-band 0 1 5 AU

Geometric model : inner rim at 0.17 AU with an inclination of 59 deg.
Radiative transfer model: flared disk with an inner radius at 0.18 AU,
grain size of 0.4 mkm, silicates at Tsub=1600 K.

Only the dusty disk wind successfully accounts for the K-band excess
by introducing dust above the mid-plane.

Labdon et al. 2019



https://ui.adsabs.harvard.edu/

CONCLUSIONS

the UXor effect is common for HAeBe and cTTS;
a dusty disk wind is a source of the circumstellar extinction in cTTS;
the outflow events in cTTS may affect the near dusty environment;

a deep long-lasting dimming occur due to inner disk perturbations or
collisions of planetesimals
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