Asen S. Mutafov^{1,a}, Evgeni H. Semkov¹, Stoyanka P. Peneva¹, Sunay I. Ibryamov²

¹ Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences,

72, Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria;

² Department of Physics and Astronomy, Faculty of Natural Sciences, University of Shumen,

115, Universitetska Str., 9712 Shumen, Bulgaria

a) Corresponding author: amutafov@astro.bas.bg

Introduction

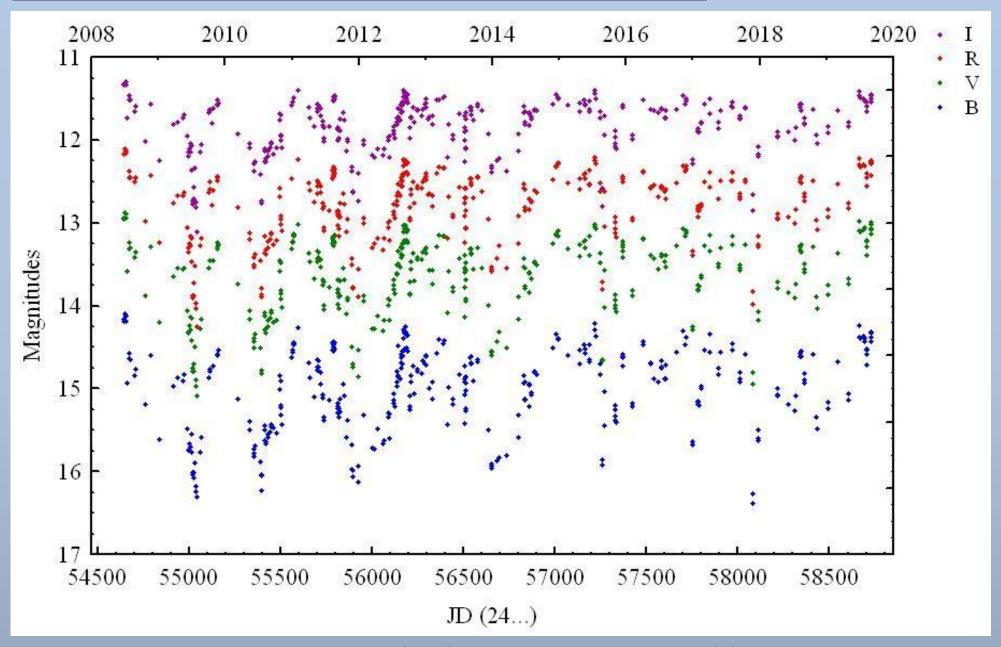
- The PMS star GM Cep
 - member of the cluster Trumpler 37
 - ✤ distance of 870 pc
 - $M \sim 2.1 M_{\text{m}}$ solar mass
 - ✤ G7V-K0V spectral type
 - \clubsuit radius between 3 and 6 $R_{\tt m}$

The PMS star V1180 Cas

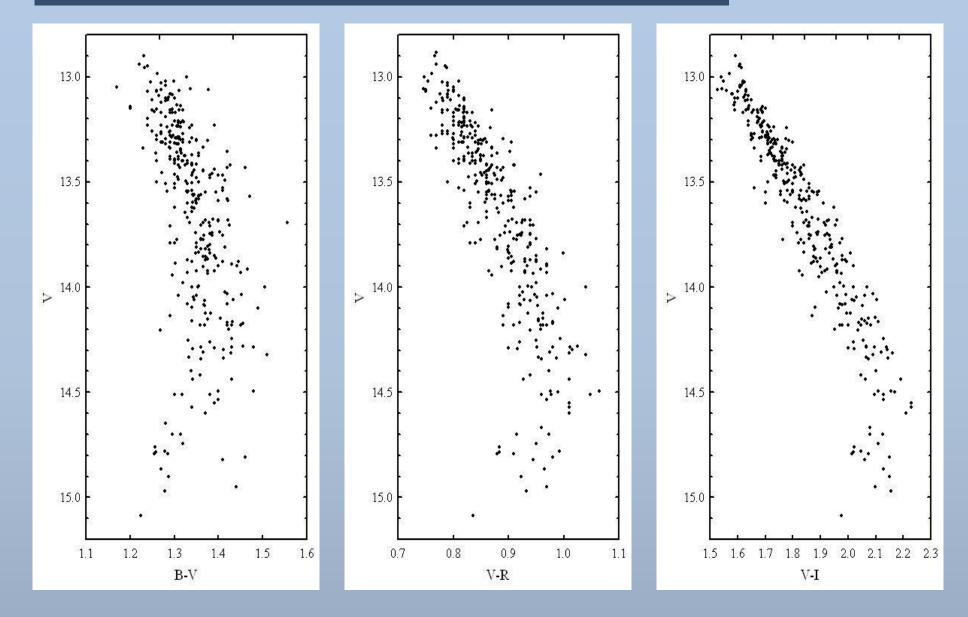
- ✤ associated with the dark cloud Lynds 1340
- ✤ distance of 600 pc in the star forming region in Cassiopeia.
- ✤ Hα emitter (Kun+, 1994).

Observations

The CCD observation of GM Cep and V1180 Cas was performed in two observatories with four telescopes and nine different types of CCD cameras:


Rozhen National Astronomical Observatory (Bulgaria)

- the 2-m Ritchey-Chretien-Coude
 - ✓ Photometrics AT200
 - ✓ Vers Array 1300B
 - ✓ ANDOR iKon-L
- ✤ the 50/70-cm Schmidt
 - ✓ SBIG ST8
 - ✓ SBIG STL-11000M
 - ✓ FLI PL16803
- the 60-cm Cassagrain telescopes
 - ✓ FLI PL9000
- Skinakas Observatory of the University of Crete (Greece)


♦ the 1.3-m Ritchey-Chretien telescope
✓ Photometrics CH360
✓ ANDOR DZ436-BV

Observations

- > All frames were taken through a standard Johnson-Cousins set of filters
- Our data was analyzed using fixed apertures:
 - for GM Cep it was chosen to be 6" radius (while the background annulus was taken from 11" to 17")
 - for V1180 Cas it was chosen to be 4" radius (while the background annulus was taken from 13" to 17")

In Fig. 1 The *B*, *V*, *R* light curves of GM Cep for the period of our CCD photometric monitoring (June 2008 – August 2019). During ongoing photometric monitoring nine deep minimums in brightness are observed.

In Fig. 2 using data from our *BVRI* photometry of GM Cep in the period of observations June 2008 - August 2019 we constructed and displayed the three color-magnitude diagrams (*B*-*V*/*V*, *V*-*R*/*V* and *V*-*I*/*V*). The existence of a turning point of each of the diagrams is seen on the figure.

Results

- The new photometric data showed continued strong brightness variability of GM Cep as registered in the previous studies (Sicilia-Aguilar+, 2008; Xiao+, 2010; Semkov & Peneva 2012; Chen+, 2012, Semkov+, 2015).
- In the time scale of days and months outside the deep minimums GM Cep also shows significant brightness variations.
- The summarized results of over ten year period of observations show very strong photometric variability. We have registered nine deep minimums in brightness in the light curve of GM Cep.
- The collected multicolor photometric data shows the typical of UXor variables color reversal during the minimums in brightness.
- Our photometric results for the period June 2008 August 2019 suggest that the variable extinction dominates the variability of GM Cep.

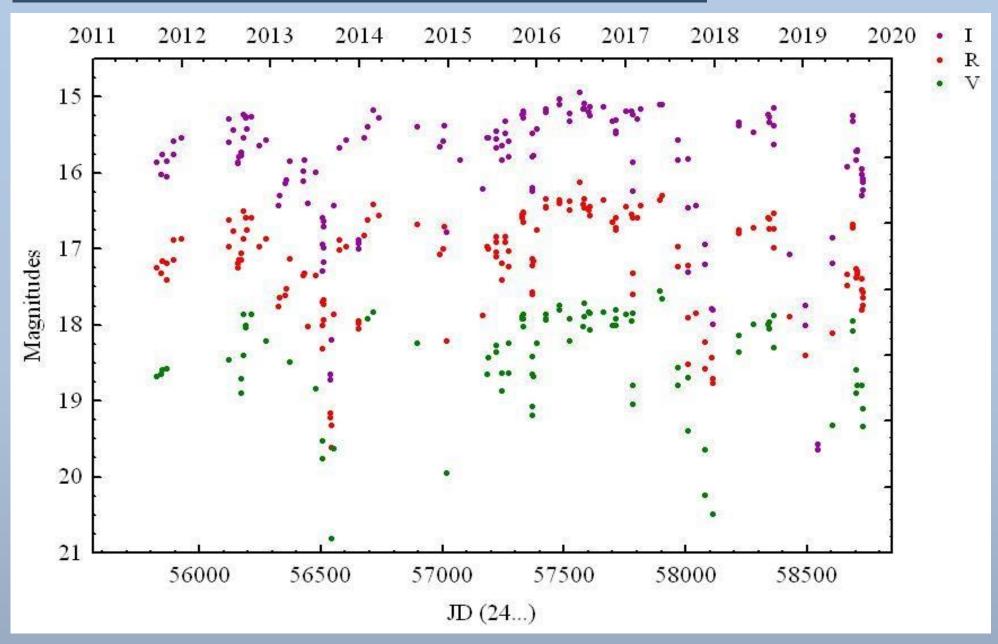


Fig. 3. Data from our *VRI* photometric monitoring of V1180 Cas in the period October 2011 – August 2019 are presented. The object exhibited large amplitude brightness variations $DI_C \sim 4-5$ mag

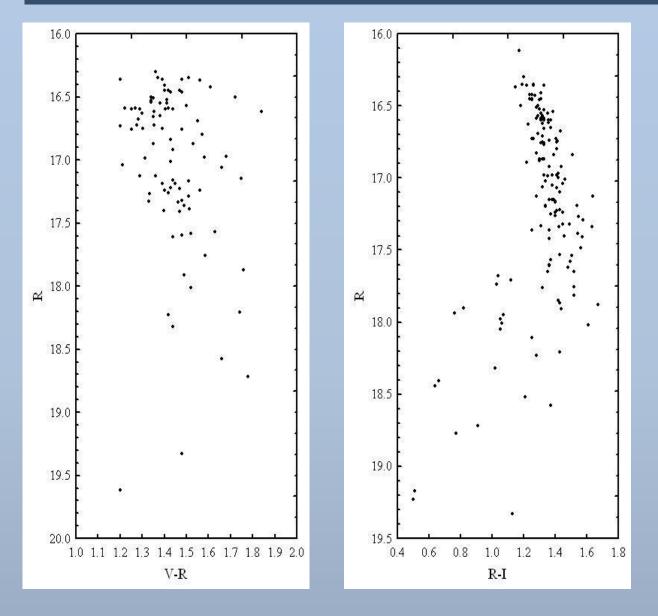


Fig. 4. The color-magnitude diagrams (V-R/V and V-I/V) of V1180 Cas in the period of observations October 2011 - August 2019. The existence of a turning point of each of the diagrams is seen on the figure.

Results

- ➤ During the 8 year period of observations the photometric data shows large amplitude variations (△I ~ 4.7 mag)
- The first deep minimum is registered in September 2013, the second in December 2017 and the third one in February 2019.
- V1180 Cas shows significant brightness variations in the timescale of days and months when not in a deep minimum, too, similar to another UX Ori type variable star GM Cep (Semkov & Peneva 2012; Semkov+, 2015).
- V1180 Cas shows color reversal during its minimum of brightness similar to GM Cep (Fig.4).

Acknowledgements

This work was partly supported by the Bulgarian Scientific Research Fund of the Ministry of Education and Science under the grants DN 08-1/2016, DN 08-20/2016 and DN 18-13/2017 as well as by the project RD-08-37/2019 of the University of Shumen..

THANK YOU