Time-variability and disk geometry in Herbig Ae stars: a simultaneous optical - infrared study of the UXor phenomenon

Péter Ábrahám

Róbert Szakáts, Ágnes Kóspál Konkoly Observatory

Research Centre for Astronomy and Earth Sciences Budapest, Hungary

The UX Ori type stars and related topics, St. Petersburg, 2019 October 1st

Optical variability of Young Stellar Objects

- YSOs are well-known about their optical and near-infrared variability. Three main classes of variability (Herbst et al. 1994):
- **Type I Cool spots**: similar to sunspots, rotating for a few periods
- **Type II** Hot spots or zones: variable veiling continuum arising in small transient hot regions where accretion energy is dissipated (periodic or irregular). Mainly later spectral type.
- **Type III** Variable obscuration. Mainly earlier spectral type. Most studied type is the *UXor phenomenon:* protocometary clouds or protocomets (Grady et al. 2000), hydrodynamic fluctuation in the disk surface (Bertout 2000), puffed-up inner rim (Dullemond et al. 2003)

Light curve of UX Ori

Type II-III are related to the disk!

Variability at thermal infrared wavelengths

- Infrared disk emission was long assumed to be constant (but eruptive stars)
- IRAS variability flag showed definite changes (Prusti & Mitskevich 1994)
- Recent mid-infrared photometric studies: a large fraction of YSOs are variable in the thermal infrared (70-80% of YSOs are variable above the 0.1 mag level, e.g. Barsony et al. 2005, Morales-Calderón et al., 2009, Luhman et al., 2010)

Morales-Calderón et al. (2011)

Observable disk changes in the infrared

et al. Nature, 2013, Balog et al. 2014)

Dust clouds lifted up by turbulent motions the disk atmosphere (Turner et al. 2010)

> Dimmings caused by orbiting dust structures (RZ Psc, credit: ISRO)

Warp in the disk of LRLL 31 (Muzerolle et al. 2009)

Radiative transfer models of light variations

Kesseli et al. (2016)

Schwore et al. (2017)

Radiative transfer models of light variations

Konkoly mid-infrared spectral variability atlas (Kóspál+ 2012)

Mid-infrared spectroscopy from ISO and Spitzer

Seven well-known Uxors in the sample

Strong silicate feature variability detected

The Konkolyvar program (2009-10)

quasi-simultaneous monitoring 14-day Α program with daily cadence, in 2009 Sep-Nov.

<u>UX Ori type targets</u>: BF Ori, RR Tau, SV Cep, VV Ser, UX Ori, V517 Cyg, VX Cas, WW Vul

Observations:

- Optical BVRI: Piszkéstető Obs. (Hungary), Teide Obs. (Spain);
- \succ Near-IR JHK: Teide Obs. (Spain);
- \blacktriangleright Mid-IR 3.6 and 4.5 µm: Spitzer Space **Telescope** (NASA)

Schmidt telescope, Konkoly Observatory

Spitzer Space Telescope (Credit: NASA)

RR Tau

UX Ori

V517 Cyg

VV Ser

RR Tau

Scaling multiband light curves to match the amplitude of Ic, assuming pure extinction.

After scaling, B, Ic and 4.5 micron light curves run parallel

A homogeneous extinction of the star and the inner disk

Two similar cases: RR Tau, VX Cas

3/5 fading events are pure extinction

ลบ

BF Ori: simultaneous optical-infrared fading: patchy obscuring clump, clear to the star?

WW Vul: no eclipse in the optical: rotation of a bright disk area? 2/5 fadings are complex events

WW Vul

- B9-A0-type star • **ISOPHOT** data Long-term variability • Optical-MIR anticorr. • Optical-FIR corr. Optical change: Av • **RT** modeling:

- changing inner rim

(Juhász, Prusti, Ábrahám, Dullemond 2008)

TESS: UX Ori

TESS: WW Vul

TESS: BF Ori

Summary

UX Ori type stars exhibit strong variability in the mid-infrared Variations of the 10 micrometer silicate emission feature (Kóspál+ 2012) We monitored 8 Uxors in 2009, and detected 5 dimming events In 3/5 cases pure extinction with a single Av explains the light curves In 2/5 cases optical and infrared flux evolution differ, more complex explanations The already known anti-correlation between optical and mid-infrared fluxes of SV Cep were detected

TESS will provide superior optical photometry for our sources

Thanks for your attention!